On metric spaces with the Haver property which are Menger spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lindelöf Spaces Which Are Menger, Hurewicz, Alster, Productive, or D

We discuss relationships in Lindelöf spaces among the properties “Menger”, “Hurewicz”, “Alster”, “productive”, and “D”. This note is a continuation of [13]. The question of what additional assumptions ensure that the product of two Lindelöf spaces is Lindelöf is natural and well-studied. See e.g., [28], [30], [2], [3], [4], [5], [6], [32], [33]. D-spaces were introduced in [20]. Definition. A s...

متن کامل

Some Remarks on Almost Menger Spaces and Weakly Menger Spaces

{V : V ∈ Vn} = X . Clearly, every Menger space is almost Menger and every almost Menger space is weakly Menger, but the converses do not hold (see Examples 2.1 and 2.2). On the study of weakly Menger spaces, almost Menger spaces and Menger spaces, the readers can see the references [2, 3, 4, 5, 6]. Here we investigate the relationships among almost Menger spaces, weakly Menger spaces and Menger...

متن کامل

On metric spaces induced by fuzzy metric spaces

For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm,  we present a method to construct a metric on a  fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space.  Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...

متن کامل

The Amalgamation Property for G-metric Spaces

Let G be a (totally) ordered (abelian) group. A Gmetric space (X, p) consists of a nonempty set A"and a G-metric />: XxX->-G (satisfying the usual axioms of a metric, with G replacing the ordered group of real numbers). That the amalgamation property holds for the class of all metric spaces is attributed, by Morley and Vaught, to Sierpiñski. The following theorem is proved. Theorem. The class o...

متن کامل

Metric Spaces in which All Triangles Are Degenerate Bettina

In any subspace of the real line R with the usual Euclidean metric d(x, y) = |x− y|, every triangle is degenerate. In R or R with the usual Euclidean metrics, a triangle is degenerate if and only if its vertices are collinear. With our intuition of a degenerate triangle having “collinear vertices” extended to arbitrary metric spaces, we might expect that a metric space in which every triangle i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2010

ISSN: 0166-8641

DOI: 10.1016/j.topol.2009.03.054